MATHEMATICS FOR GEOLOGISTS

L.D.KNORING All-Union Geological Oil Survey Research Institute, St. Petersburg, Russia

V.N.DECH St. Petersburg State University, St. Petersburg, Russia

Edited by R.B.ZEIDLER H*T*S, Gdańsk

Authorization to photocopy items for internal or personal use, or the internal or personal nee of specific tilents, is granted by A. A. Balkema, Rotterdam, provided that the base fee of US11.00 per copy, plus US20.10 per page is paid directly to Copyright Clearance Center, 27 Congrests Struct. Salem, MA 01970, USA. For these organizations that have been granted a photocopy literas is CCC, a represe system of payment has been arranged. The fee code for users of the Timerasticnal Reporting Service is: 90.5410.253 3/93 US\$1.00 + US30.10.

> Originally published as: Geologu o matematile – Sovety po prakticheskoms primenyeniya ©1989 Neitra, Leningrad

English translation: © 1993 A.A. Ballema, P.O.Box 1675, 3000 BR Rottendum, Netleedat

> SSN 0926-5074 SBN 90 5410 253 5 Tritted in the Netherlan

A.A. BALKEMA / ROTTERDAM / BROOKFIELD / 1993

Contents

PREFACE	IX
1 MATHEMATICS IN APPLIED RESEARCH	1
 2 PROBLEMS OF MODELLING 2.1 Concepts and contents of models 2.1.1 Internal (esoteric) aspect 2.1.2 External (exoteric) aspect of reality 2.2 Role of observations and facts 	7 7 8 11 13
2.3 Language of description2.4 Aims and details of description	14 16
 3 MODELS OF PHENOMENA 3.1 Modelling of natural processes 3.1.1 Dynamical models 3.1.2 Structural models 3.1.3 Probabilistic models 3.1.3.1 Models of stochastic dispersion 3.1.3.2 Models of phenomena with random per 3.2 Models of phenomena with human participation 3.2.1 Models of controlled processes 3.2.2 Models of uncontrolled processes 	19 19 21 38 45 46 erturbation 53 63 78
 4 MODELS IN TERMS OF PROCESSES 4.1 Model of factor (component) analysis 4.2 Decomposition of functions into empirical orthogon 4.3 Models of periodic processes 4.3.1 Decomposition into harmonic components 4.3.1.1 Spectral analysis 4.3.1.2 Second approach 4.3.2 Models of seasonal processes 4.4 Autoregression models 	82 83 93 93 94 97 102 106

VIII Mathematics for geologists

4.5 Models of spatial filtering	110
4.5.1 General	110
4.5.1.1 Geologic foundations of modelling	111
4.5.1.2 Mathematical foundations of modelling	113
4.5.2 Mathematical model of spatial filtering	114
5 MODELS OF OBJECTS	126
5.1 Modelling the varying size and properties of homogeneous objects	127
5.2 Modelling relationships between properties of objects	130
5.2.1 Variance analysis	131
5.2.2 Regression analysis	133
5.2.3 Covariance analysis	141
5.3 Models for spatial variation of properties of geologic objects	143
5.3.1 Models of spatial variability in solution of exploratory tasks	144
5.3.1.1 Regression	145
5.3.1.2 Smoothing	146
5.3.2 Models of spatial variability in solution of estimation tasks	148
5.3.2.1 Models employed in oil geology	149
5.3.2.2 Models employed in ore geology	157
5.4 Classification models for geologic objects	162
5.4.1 Characteristics of models	163
5.4.2 Statistical (analytical) methods	166
5.4.2.1 Discrimination analysis	166
5.4.2.2 Cluster analysis	172
5.4.3 Fuzzy methods	175
5.4.4 Linguistic methods	177
6 ANALYSIS OF MODELS	179
6.1 Analysis of differential equations	179
6.2 Estimation of dynamic characteristics of stochastic models and	
parameters of statistical distributions	181
6.3 Estimation of model parameters	185
6.3.1 Models of linear systems	186
6.3.1.1 Deterministic approach	186
6.3.1.2 Statistical approach	187
6.3.2 Models of nonlinear systems	190
CONCLUDING REMARKS	194
REFERENCES	198

V